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Abstract

Apparent electrical conductivity (ELof the soil profile can be used as an indirect indicator of a
number of soil physical and chemical properties. Commercially availables&iSors can efficiently
and inexpensively develop the spatially dense datasets desirable for describing within-field spatial solil
variability in precision agriculture. The objective of this research was to relajel&@ to measured
soil properties across a wide range of soil types, management practices, and climatic conditions. Data
were collected with a non-contact, electromagnetic induction-basgdétSor (Geonics EM38) and
a coulter-based sensor (Veris 3100) on 12 fields in 6 states of the north-central United States. At 12—20
sampling sites in each field, 120-cm deep soil cores were obtained and used for soil property deter-
mination. Within individual fields, EM38 data collected in the vertical dipole orientation (0—150 cm

Abbreviations: CEC, cation exchange capacity; DGPS, differential global positioning system; EC, electrical
conductivity; EG, apparent soil electrical conductivity; gG, shallow (0—-30 cm) Egmeasured by Veris 3100;
ECa.dp, deep (0-100cm) ECmeasured by Veris 3100; BGm vertical mode (0-150 cm) EQmeasured by
Geonics EM38; EM, electromagnetic induction; GPS, global positioning system; MLRA, major land resource
area; PSD, profile standard deviation
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depth) and Veris 3100 deep (0—100 cm depth) data were most highly correlated. Differences between
EC, sensors were more pronounced on more layered soils, such as the claypan soils of the Missouri
fields, due to differences in depth-weighted sensor response curves. CorrelationsvatiEClay

content and cation exchange capacity (CEC) were generally highest and most persistent across all
fields and EG data types. Other soil properties (soil moisture, silt, sand, organic C, and paste EC)
were strongly related to EGn some study fields but not in others. Regressions estimating clay and
CEC as a function of ECacross all study fields were reasonably accundte 0.55). Thus, it may

be feasible to develop relationships between B clay and CEC that are applicable across a wide
range of soil and climatic conditions.

© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Efficient and accurate methods of measuring within-field variations in soil properties are
important for precision agriculture. Sensors that can collect dense datasets while traversing a
field provide several advantages over traditional measurement methods that involve soil sam-
ple collection and analysis. These advantages may include lower cost, increased efficiency,
and more timely results. In addition, the ability to obtain data at many more points with a
sensor, as compared to sampling methods, means that overall spatial estimation accuracy
canincrease even if the accuracy of individual measurements is I8wed(th et al., 1997

Apparent electrical conductivity (E{of the soil profile is a sensor-based measurement
that can provide an indirect indicator of important soil physical and chemical properties.
Soil salinity, clay content, cation exchange capacity (CEC), clay mineralogy, soil pore size
and distribution, and soil moisture content are some of the factors that affg¢MeSleill,

1992; Rhoades et al., 199%ost of the variation in Egcan be related to salt concentration

for saline soils WVilliams and Baker, 1982 In non-saline soils, conductivity variations are
primarily a function of soil texture, moisture content, and CERBdades et al., 1976A
theoretical basis for the relationship betweenyEB@d soil properties was developed by
Rhoades et al. (1989n this model, EGwas a function of soil water content, the electrical
conductivity of the soil water, soil bulk density, and the electrical conductivity of the soil
particles. Recently, techniques have been developed to use this model for predicting the
expected correlation structure betweengEfata and multiple soil properties of interest
(Lesch and Corwin, 2003

Two types of portable, within-field E{Sensors are commercially available for agricul-
ture, an electrode-based sensor requiring soil contact and a non-contact electromagnetic
induction (EM) sensor. In an early report of the electrode-based apprdabtigrson and
Rhoades (1976heasured EQwith a four-electrode sensor and used these measurements to
create maps of soil salinity variations in a field. Later, a version of the electrode-based sen-
sor was tractor-mounted for mobile, georeferenced measurementg RE@ades, 1993
A commercial device implementing the electrode-based approach is the Verfs(326i@

1 Mention of trade names or commercial products is solely for the purpose of providing specific information
and does not imply recommendation or endorsement by the US Department of Agriculture or its cooperators.
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Technologies, Salina, KS), which uses six rolling coulters for electrodes and provides two
simultaneous Egmeasurementd (nd et al., 199%

The EM-based Egsensor most often used in agriculture is the EM38 (Geonics Limited,
Mississauga, Ont., Canada), which was initially developed for root-zone salinity assessment
(Rhoades and Corwin, 1981Details of the EM sensing approach are givenMigNeill
(1992) The EM38iis a lightweight bar designed to be carried by hand and provide stationary
ECyreadings. Toimplement mobile data acquisition with this unit, itis necessary toassemble
a transport mechanism and data collection system @amnon et al., 1994; Sudduth et al.,
2007). As reported bySudduth et al. (2003each type of commercial EGensor has its
own operational advantages and disadvantages.

Soil EG, can be used to indirectly estimate soil properties if the contributions of the
other soil properties affecting the E@easurement are known or can be estimated. In
some cases, the within-field variations in £@le to one soil property predominate and
EC, can be calibrated directly to that dominant factor. Examples of this direct calibration
approach include estimating soil salinity in California (eLgsch et al., 1995a, 199band
topsoil depth above a subsoil claypan horizon in Missdddd]ittle et al., 1994; Kitchen
et al., 1999; Sudduth et al., 2001

Researchers have related £© a number of different soil properties either within
individual fields or across closely related soil landscapes. Examples include soil moisture
(Kachanoski et al., 1988; Sheets and Hendrickx, 198iay content\Villiams and Hoey,
1987, and CEC and exchangable Ca and NUrBride et al., 1990 Mapping of areas
of differing soil texture Kitchen et al., 1996; Doolittle et al., 20pand soil type Jaynes
et al., 1993; Anderson-Cook et al., 2Q0fave also been reportedohnson et al. (2001)
evaluated Egfor delineating a number of soil physical, chemical, and biological properties
related to yield and ecological potential and concluded that\i&s useful for delimiting
distinct zones of soil condition. Although many soil factors affecting & relatively fixed
over time (e.g., clay content), others may exhibit strong seasonal dynamics. For example,
Eigenberg etal. (2002¢lated a time sequence of E@aps to temporal changes in available
soil nitrogen and hypothesized that it might be possible to usgrB€asurements as an
indicator of soluble nitrogen gains and losses in the soil over time.

Since EG integrates texture and moisture availability, two characteristics that both vary
over the landscape and also affect productivity, B&s been related to grain yield variations.

In a topographically diverse area of lowa with highly contrasting soil drainage classes,
Jaynes et al. (1993¢ported strong negative correlations betweegp & corn and soybean
grainyield in awet year, but no significant correlation in a year of more normal precipitation.
In a study conducted on claypan soils in Misso@udduth et al. (1995pund that grain

yield was negatively related to E@ a dry year, with little effect found in a year with more
optimum precipitation patterns. As these studies show, the relationship betwgem&C
crop yields may vary both spatially due to soil differences and temporally due to climatic
differences.

Commercial operators are using £€ensing systems to provide soil variability in-
formation to producers. Often, the tendency is to relatg B@ps directly to crop yield
maps, with the same variable results documented above. A more thorough, and more gen-
erally applicable, procedure would be to first relate sensor data to soil profile properties
and then to relate soil variability and climatic conditions to yields. This research was un-
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dertaken to provide information needed for the first step in this procedure by document-
ing the relationship of ECto soil properties on 12 research fields in 6 north-central US
states. Objectives were to (i) interpret differences iny E@ta obtained with two com-
mercial sensors, the non-contact Geonics EM38 and the coulter-based Veris 3100, (ii)
document the relationship of E@ata to soil properties, and (iii) investigate the improve-
ment, if any, obtained by combining multiple E@®ariables for estimating soil proper-
ties.

2. Materials and methods
2.1. Study fields

Data were collected on 12 soybean-corn fields, 2 each in Missouri (MO), lllinois (IL),
Michigan (MI), Wisconsin (WI), South Dakota (SD), and lowa (I1Axble 1gives locations
and characteristic information for the twelve fields, which were part of a regional precision
agriculture research project. These fields were selected in part due to the degree of within-
field soil and production variability present, and to represent the range of climate, soil, and
landscape characteristics typical of the north-central US. This natural diversity is evidenced
by the fact that the 12 fields are included in 7 different “major land resource areas” (MLRAS,
Table J), as defined by th&).S. Department of Agriculture (1981for convenience, the
fields will be referred to herein by the states in which they were located, rather than the
MLRAs. However, it should be noted that any transferability of the results of this study
to other sites would be on the basis of the natural boundaries defined by the MLRAs,
irrespective of man-made political boundaries.

Soils of the study fields exhibited differences in terms of texture, parent material, and
mineralogy. For example, prevailing surface soil texture varied across the research sites
as follows: loam (Michigan), silt loam (Wisconsin), loam to clay loam (lowa), silt loam
to silty clay loam (lllinois; Missouri; South Dakota). Subsoil texture was even more vari-
able, ranging from loamy sand at the Michigan fields to clay at the Missouri fields. Com-
plete taxonomic descriptions of the predominant soils in the study fields are given in
Table 2

2.2. EG sensors and response curves

The Geonics EM38 can be operated in two orientations, vertical dipole and horizontal
dipole, with effective measurement depths of approximately 1.5 m and 0.75 m, respectively
(McNeill, 1992. In this research, the EM38 was operated only in the vertical dipole mode.
We chose not to use the EM38 horizontal dipole mode because this would have required
a second data collection operation. Additionally, since the effective measurement depth of
the EM38 horizontal reading is between those of the two Veris 3100 readings, we expected
that little additional information would be obtained.

The EG measurement from the EM38 vertical dipole mode (designated as&iG
this study) is averaged over a lateral area approximately equal to the measurement depth
(McNeill, 1992. The theoretical instrument response to soil conductivity varies as a non-



Table 1

Study field descriptions

State Field Size Location

Major Land Resource

Predominant Soils

Average annualAverage May—September

(ha) Area (MLRA) precip. (mm) temperature°C)
County Coordinates
MO F1 36 Boone 391348'N, 113 Central claypan areas Mexico, Adco, Leonard 1026 21.6
92°0701'W
GV 14 Boone 391405'N, 113 Central claypan areas Mexico, Adco, Leonard 1026 21.6
92°0848'W
IL WS 16 McLean 401801"N, 110 Northern lllinois and Varna, Drummer, Chenoa 960 20.8
88°3238'W Indiana heavy till plain
WN 16 McLean 4018'18'N, 110 Northern lllinois and Varna, Swygert, Drummer 960 20.8
88°3238'W Indiana heavy till plain
Ml Cw 20 Kalamazoo 42225'N, 98 Southern Michigan Kalamazoo 940 20.0
85°3555'W and Northern Indiana drift
plain
CE 28 Kalamazoo 42225'N, 98 Southern Michigan Kalamazoo 940 20.0
85°3542'W and Northern Indiana drift
plain
Wi z2 16 Columbia  432029'N, 95B Southern Wisconsin  Plano, Ripon, Channahon 790 18.4
89°20'16"'W and Northern lllinois drift
plain
Z1 16 Columbia  4321'16"N, 95B Southern Wisconsin  St. Charles, Knowles 790 18.4
89°1855'W and Northern lllinois drift
plain
SD BR 65 Brookings  4#1341"N, 102A Rolling till prairie Kranzburg, Vienna, Brookings 576 17.6
96°3904’'W
MY 65 Moody 441015'N, 102B Loess uplands and  Kranzburg, Waubay, Cubden 582 18.2
96°3725'W till plains
1A HH 20 Boone 4256'19'N, 103 Central lowa and Canisteo, Okoboji, Harps 805 19.8
94°0516"W Minnesota till prairies
MG 20 Boone 415555'N, 103 Central lowa and Min- Clarion, Nicollet, Canisteo 805 19.8
94°04'34'W nesota till prairies
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Table 2

Taxonomic descriptions of study field soils

Soil State Taxonomic description

Adco MO Fine, smectitic, mesic Vertic Albaqualfs

Brookings SD Fine-silty, mixed, superactive, frigid Aquic
Hapludolls

Canisteo 1A Fine-loamy, mixed, superactive, calcareous,
mesic Typic Endoaquolls

Channahon Wi Loamy, mixed, superactive, mesic Lithic
Argiudolls

Chenoa IL Fine, illitic, mesic Aquic Argiudolls

Clarion 1A Fine-loamy, mixed, superactive, mesic
Typic Hapludolls

Cubden SD Fine-silty, frigid Aeric Calciaquolls

Drummer IL Fine-silty, mixed, superactive, mesic Typic
Endoaquolls

Harps 1A Fine-loamy, mixed, superactive, mesic
Typic Calciaquolls

Kalamazoo Mi Fine-loamy, mixed, semiactive, mesic Typic
Hapludalfs

Knowles Wi Fine-silty, mixed, mesic Typic Hapludalfs

Kranzburg SD Fine-silty, mixed, superactive, frigid Calcic
Hapludolls

Leonard MO Fine, smectitic, mesic Vertic Epiaqualfs

Mexico MO Fine, smectitic, mesic Aeric Vertic
Epiaqualfs

Nicollet 1A Fine-loamy, mixed, superactive, mesic
Aquic Hapludolls

Okoboji 1A Fine, smectitic, mesic Cumulic Vertic
Endoaquolls

Plano Wi Fine-silty, mixed, superactive, mesic Typic
Argiudolls

Ripon Wi Fine-silty, mixed, superactive, mesic Typic
Argiudolls

St. Charles Wi Fine-silty, mixed, superactive, mesic Typic
Hapludalfs

Swygert IL Fine, mixed, active, mesic Aquic Argiudolls

Varna IL Fine, illitic, mesic Oxyaquic Argiudolls

Vienna SD Fine-loamy, mixed, superactive, frigid Cal-
cic Hapludolls

Waubay SD Fine-silty, mixed, superactive, frigid Pachic
Hapludolls

linear function of depth, as given by Ed.) (McNeill, 1980).

3/2
Rem = 42(42 + 1) )

whereRen is the relative response of EM38 anthe distance below sensor (m).

Sensitivity in the vertical mode is highest at about 0.4 m below the instrurientd).
The EG measurementis anintegrated response to changes in soil conductivity with depth, as
weighted by this instrument response functidcNeill, 1992). The EM38 was combined



K.A. Sudduth et al. / Computers and Electronics in Agriculture 46 (2005) 263—-283 269

=== ————
\\ ___________
0.25 [— _--"r
e - I’
7 4
/ e
05 H
) '/,
1 ’
S I !
'% 0.75 ,'— J EM38 vertical mode
© / Veris shallow reading
o / Veris deep reading
/
]
e
|
i
;
]
1
1
i
125+
|
i
1}
1
}
15 ! [l I 1 I 1
0 2 4 6
Relative response

Fig. 1. Relative response of EGensors as a function of depth. Responses are normalized to yield a unit area

under each curve.
with a data acquisition computer and differential GPS (DGPS) system for mobile data

collection, as described iyudduth et al. (2001)
The Veris 31001(und et al., 1999uses rolling coulter electrodes to directly sense soil

electrical conductivity. Measurement electrodes are configured to provide both shallow and

deep readings of EQdesignated as EGnand EG_qp, respectively). As with the EM38,
the Veris 3100 response to soil conductivity varies as a nonlinear function of depth. The
electrodes of the Veris 3100 are configured in a Wenner array, an arrangement commonly

used for geophysical surveydilsom, 1996. The theoretical response of the Wenner array

is given by Eq(2) (Roy and Apparao, 1971

—3/2 —-3/2
Ry = <813‘Z) (("92 + 412> —~ (452 + 4z2) > )

whereRy, is the relative response of Wenner arrdayhe distance between outermost elec-

trodes (m) ana is the distance below sensor (m).
For the Veris 3100 shallow reading, the valué.@f Eq.(2)is 0.7 m; for the deep reading

it is 2.2m. The graph of these responsegg( 1) shows them to be similar in shape to the
response of the EM38, although the two Veris responses reach a maximum nearer the soil

surface and then decrease more rapidly with depth.
Integrating the response curvedad. 1with respect to depth clearly shows the different

soil volumes examined by the sensoFsg( 2). With the Veris shallow reading (EGp,
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Fig. 2. Cumulative response of E€ensors as a function of depth.

90% of the response is obtained from the soil above the 30-cm depth. With the Veris deep
reading (EG.qp), 90% of the response is obtained from the soil above the 100-cm depth.
With the EM38 vertical reading (EGrm), 70% of the response is obtained above about
1.5m. By integrating Eqg(1), it can be shown that 90% of the EM38 vertical response is
obtained above about 5 m. The response curv&sgsf 1 and Z&re based on equations that

assume a homogeneous soil volume. Actual weighting functions will vary somewhat due
to EC, differences among soil layers, with a highly conductive surface layer reducing the
response depttBarker, 1989.

2.3. Data collection

The EG data for each field were collected with both sensors on the same date, either
after harvest or prior to plantingéble 3. The Veris 3100 and Geonics EM38 were operated
in tandem, taking measurements on transects spaced approximately 10 m apartaSoil EC
in milliSiemens per meter (mS™), was recorded on a 1-s interval, corresponding to a
4—6 m data spacing. Between 4400 and 13,000 individugle€asurements were obtained

for each field. Data obtained by differential GPS was associated with each sensor reading

to provide positional information with an accuracy of 1.5 m or better. Raw d&fa were

offset by 1 s to compensate for the position of the GPS antenna ahead of the sensor and for
time lags in the data acquisition systeBuflduth et al., 2001



K.A. Sudduth et al. / Computers and Electronics in Agriculture 46 (2005) 263—-283 271

Table 3
Summary of whole-field Egdatasets
State Field Sampling date BEGm ECash ECa-dp 0-60 cm soil
temperature°C)
Mean CV Mean CV Mean CcVv
(mSnrl) (mSnrl) (mSnTl)
MO F1 16 November 1999 3D 0.12 97 0.32 1% 0.43 153
GV 17 November 1999 38 0.18 152 0.49 237 0.49 138
IL WS 14 October 1999 33 0.24 279 0.25 411 0.29 155
WN 14 October 1999 30 0.28 277 0.29 393 0.31 162
Ml CW 1 May 2001 6 0.28 52 0.58 61 0.49 165
CE 1May2001 n 0.21 68 029 86 0.26 165
Wl Z2 2 May 2001 1% 0.17 151 0.34 208 0.27 179
Z1 2 May 2001 13 0.11 123 0.41 210 0.19 179
SD BR 27 October 2000 26 0.12 121 0.45 189 0.29 60
MY 20 October 2000 28 0.26 151 0.62 274 0.43 112
1A HH 11 November 1999 36 0.31 352 0.46 463 0.46 140
MG 10 November 1999 32 0.33 233 0.57 363 0.55 148

Using our previously reported approacdu@duth et al., 20Q1 a calibration transect
was established to monitor EGensor drift during each field survey. Data were collected
on this transect at least every hour, and rawy E€adings were adjusted based on any
change in calibration transect data. As expected, the diregtsEfsing approach of the
Veris system was much less prone to instrument drift than was the EM38; in fact none of
the Veris data collected in this study required adjustment. In practice, drift compensation
would probably not be required for Veris EGurveys. However, drift evaluation and/or
compensation should be a routine operation to maintain the quality of EM38 surveys.

To document soil temperature at the time of data collection, multiple readings were
obtained with a handheld thermocouple probe. Data were collected on a 15-cm depth incre-
ment and averaged to a 60-cm depth. Soil temperature data were obtained and averaged by
field, except for the Ml and WI fields, where a single set of temperature data was collected
representing both field§éble 3.

After EC, data were mapped, between 12 and 20 calibration sampling sites were selected
within each field. These sites were chosen by a soil scientist familiar with the soils in the
particular field to provide Eg&values distributed similarly to those in the E@ap, with
the additional goal of including samples from all the landscape positions and soil map
units present in the field. One 4.0-cm diameter core 120cm in length was obtained at
each site using a hydraulic soil-coring machine. Cores were examined within the field
by a skilled soil scientist and pedogenic horizons identified. Cores were segmented by
horizon for laboratory analysis. Soil moisture was determined gravimetrically. Additionally,
samples for each horizon were analyzed at the University of Missouri Soil Characterization
Laboratory using methods described by NHegional Soil Survey Center Staff (199&)ata
were obtained for the following properties: sand, silt, and clay fractions (pipette method);
CEC (ammonium acetate method); organic C; and saturated paste EC.
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2.4. Data analysis

To allow comparison between EGensors, a combined dataset was created for each
field. Each Veris data point was paired with the nearest EM38 data point based on GPS
coordinates. If a match was not found within a 2 m radius, that point was removed from the
comparison dataset. Pearson correlation coefficiehtsdre calculated between the data
obtained with the different E{sensors.

Soil property data were obtained by horizon, rather than on an even depth increment. To
facilitate comparison across calibration points, a depth-weighted mean was calculated for
each soil property at each calibration point. These horizon values were also used to calculate
the profile standard deviation (PSD) at each calibration point, providing a measure of the
variability in each soil property with depth. Because F¥énsor response is not constant
with depth, three additional sets of data were created by weighting each soil property profile
by the sensor response cur¥g. 1).

Analysis of the relationship between E@nd soil properties was carried out for each
data source (E£em ECa.sh and EG.qp) and soil property. In previous work with a subset
of these datajudduth et al., 20Q03we found a lack of significant spatial autocorrelation,
likely caused by the small number (12—20) and spatial dispersion of the calibration points
in each field; therefore, we conducted a non-spatial analysis betwegardGoil proper-
ties. Pearson correlation coefficients were calculated betwegaiitCsoil properties (soil
moisture, clay, silt, sand, organic C, CEC, and saturated paste EC). Regressions were per-
formed to estimate soil properties from (i) each individuaBEt@asurement, (ii) both Veris
3100 EG measurements, and (iii) all three E@easurements. Only statistically significant
(P < 0.05) parameters were retained in the final regression equations.

3. Results and discussion
3.1. Comparison of Eg£data

Soil EG, data obtained with each sensor exhibited similar qualitative trends at the field
scale. As expected, field mean E(able 3 was highest for the fields with finer-textured
soils (MO, IL, 1A, SD) and lower for the fields with coarser-textured soils (Ml and WI). The
most variation (in terms of CV) in EQvalues was found in the lowa fields, which had the
widest range in soil texture, from loam to clay loam. In general, B€asured by EM38
was either less variable (MO, MI, WI, SD, IA) or exhibited a similar level of variation (IL)
as Veris 3100 datarable 3.

Correlation coefficients between the various@&asurements for each field are shown
in Table 4 With the exception of two fields, the highest correlations were found between
ECs.emdata and EG.gp data. Correlations between Egmndata and Eg:shdata were con-
sistently the lowest, while correlations of Egto EC,.shwere intermediate. The reason
behind this ranking can be discerned from the differences between the response curves for
the various sensor§igs. 1 and », where the EG.gpresponse curve lies between the &6
curve and the EEemcurve. Because the two fields in each state were generally similar in
terms of parent material, mineralogy, and management, combining these data yielded cor-
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Table 4
Correlation coefficientsr] between different ECmeasurements
State  Field By-state correlatichs By-field correlationd
ECa-emVs. ECa-emVs. ECa-dpVs. ECaemVs. ECa-emVs. ECa-dpVs.
Eca-dp ECa-sh ECa-sh Eca-dp ECa-sh ECa-sh
MO F1 0.78 0.69 0.71 0.74 0.60 0.74
GV 0.84 0.66 0.75
IL WS 0.86 0.77 0.80 0.84 0.78 0.80
WN 0.88 0.79 0.82
Ml cw 0.67 0.54 0.76 0.85 0.64 0.78
CE 0.75 0.59 0.65
Wi Z2 0.72 0.27 0.47 0.71 0.24 0.45
Z1 0.78 0.42 0.62
SD BR 0.84 0.79 0.85 0.75 0.69 0.79
MY 0.89 0.81 0.89
1A HH 0.95 0.88 0.91 0.95 0.89 0.92
MG 0.95 0.89 0.91
IL, ML, WI, IA 0.96 0.92 0.94
All states 0.79 0.70 0.92

a All correlations are highly significan®(< 0.001).

relations that were usually similar, and higher in some cases, than correlations calculated
within individual fields [Table 4.

Scatter plots comparing EGlata across all stateBi@. 3a) showed that the two Veris
readings were highly correlated=0.92; Table 4. However, the relationship of Veris EC
data to EG.em (Fig. 3b and c) was not as strong<0.8; Table 4. Examination ofFig. 3
shows that a common, strongly linear relationship was apparent betweamBad EG.gp
across all states except Missouri and South Dakota. In fact, when data from those two states
were removed from the analysis, correlations between all pairs gfda@ sources were
>0.92 (Table 4.

This phenomenon may be explained by differences in the degree of soil layering among
the fields. The claypan soils of the Missouri fields are highly layered in terms of clay and
CEC, two soil properties with a major effect on E(Sudduth et al., 2003In fact, claypan
soils are defined as those soils where clay content doubles within a 3-cm depth increment.
This abrupt layering, combined with differences in response functions for the different
sensorsKig. 1), explains the lower correlations seen among the data collected with the
different sensors on the Missouri fieldeaple 4 and the departure of those data from the
general linear trends seenfig. 3. Abrupt layering of EG-affecting soil properties was
also hypothesized as a reason for the similar, but weaker, nonlinear behavior of data from
South DakotaKig. 3).

Over a wide range of soil conditions found in the north-central US, the data obtained
from the various Egsensors was very similar (i.e., high correlation coefficiefable 4,
perhaps indicating some degree of “interchangeability” between the sensors. However,
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lower correlations were often obtained on a field-by-field or state-by-state basis, particularly
when relating shallow (ELsH to deeper (EG.qp and EG.en) sensor data. At least for
some of the soils datasets investigated in this study, it appears that integratiop d&taC
representing at least two different sensing depths may provide additional information related
to soil variability.

3.2. Relationship of E£to measured soil properties

A statistical summary of profile-average soil property data for the calibration points in
each field is shown iffable 5 Many of the soil properties were highly variable within
and among fields. Considerable variation was also apparent as a function of depth, as
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Table 5
Means and mean profile standard deviations (PSDs, in parentheses) for soil properties obtained from by-horizon
analysis of calibration point cores

State Field Number Soil moistu- Clay Silt Sand Organic C CEC Paste EC
of points re (gkg™)  (gkg™!) (gkg!) (gkg!) (gkg!)  (cmolkg™?) (mSnT)

MO F1 19 149 (37) 354 (135) 594 (135) 32(26) .463.5) 24.2(8.1) 24(7.0)
GV 15 156 (29) 321(76) 620(67) 60(22) .56(3.9) 22.5(5.0) 22(7.1)

L WS 17 -a 298 (41) 585(55) 113(54) 10D(7.1) 21.5(4.7) 11(2.0)
WN 12 - 298 (40) 605(61) 96(68) .8(6.8) 20.2(4.6) 17(5.0)

M CW 16 167 (33) 130 (39) 318(105) 552 (126) .575.0) 10.1(3.2) 67 (36)
CE 17 164 (30) 154 (55) 328 (161) 504 (187) .8%4.6) 10.1(3.3) 63(37)

wl z2 15 231 (38) 217 (40) 670(55) 114(61) .285.7) 17.2(3.0) 42(9.2)
Z1 16 228 (15) 216 (54) 662 (97) 122(105) .8%33.1) 15.8(3.8) 27(5.2)

SD BR 17 126 (38) 254 (38) 430(82) 317(115).487.8) 18.8(6.3) 32(8.3)
MY 20 183 (24) 263(41) 572(61) 165(71) BY7.8) 22.8(5.6) 41(11)

IA- HH 15 213 (36) 261(52) 377(51) 354(87) H18.4) 245(6.7) 66 (36)
MG 18 191 (32) 240 (44) 348 (34) 412(73) .497.3) 20.6(5.3) 91(42)

2 Soil moisture data not available for lllinois fields.

measured by the PSO¢ble 5. Mean PSDs for clay were significantly higher (Duncan’s
Multiple Range TestP < 0.05) for the Missouri fields, compared to all others. For CEC,
the highest-PSD grouping included Missouri, South Dakota, and lowa. Thus, the Missouri,
South Dakota, and lowa fields were more layered in terms of one or both of these soil
properties that are strongly related to£C

3.2.1. Correlation analysis

Correlation coefficients between Eé@nd profile soil properties were determined by state
and for the dataset as a wholed. 4). In general, highest correlations were observed for
clay and CEC. The only exception was for the South Dakota drga 4e), where highest
correlations were with soil moisture. Some soil properties were strongly relafedq.5)
to EG, for some states but not for others. Examples included soil moisture (SD, 1A), silt
(MO, IL, IA), sand (IA), organic C (IA), and saturated paste EC (SD).

When comparing the different weighting functions, correlations of B@h sensor-
weighted clay content and sensor-weighted CEC were generally highest and most persistent
across all states and E@ata typesKig. 4). This higher correlation with sensor-weighted
data supports our hypothesis that transformation of soil property data by weighting with
the sensor response function is an appropriate way to help account for curvilinearity in
the functional relationship. We previously reported similar results for the Illinois—Missouri
subset of this dateSudduth et al., 2003

3.2.2. Regression analysis using individualB@riables

Second-order polynomial regression analysis was performed to estimate soil properties
as a function of Eg both using each EQvariable independently and then (see Section
3.2.3 using combinations of the three E@ariables. Properties estimated were profile-
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Table 6
Regression statistics for the estimation of surface-layer soil properties as a functiog, efsi@ individual and
multiple-variable datasets

Soil Property State Best single-E@odel Veris shallow + deep Veris + EM38
ECydata  r? S.E?2 r2 S.E. r? S.E.
Soil moisture MO EG-sh 0.24 29 0.48 25 0.69 19
IL _b - - - - - -
MI ECa.dp OF 0.30 30 0.30 30 0.30 30
WI ECash Q 0.33 19 0.45 17 0.52 16
SD ECa-dp 0.70 23 0.79 20 0.79 20
1A ECa-sh 0.39 32 0.39 33 0.39 33
All ECa-sh 0.23 42 0.23 42 0.50 34
Clay MO EGa-sh 0.63 35 0.63 35 0.74 30
IL ECa-sh 0.53 26 0.54 25 0.70 21
MmI ECa-dp ¢ 0.38 32 0.46 30 0.46 30
WI ECa-sh 0.37 43 0.50 39 0.54 38
SD ECﬁ_dp, q 0.52 17 0.52 17 0.60 16
1A ECa-em 0.55 38 0.52 39 0.57 38
All ECa-dp q 0.55 51 0.58 50 0.66 45
Silt MO ECash g 0.62 41 0.62 41 0.63 41
IL ECadp g 0.48 34 0.47 34 0.51 32
MI ECadp Q 0.47 94 0.47 94 0.47 94
WI ECa-sh 0.39 59 0.77 38 0.82 35
SD EGeem 0.15 57 0.25 54 0.25 54
1A ECa-em 0.48 43 0.47 44 0.48 43
All ECa-em 4 0.12 142 0.10 144 0.30 127
CEC MO EG-sh 0.71 23 0.82 19 0.83 18
IL ECa-em 0.50 29 0.44 31 0.61 27
MI ECa-dp 0 0.36 27 0.36 27 0.43 26
wi ECa-em 0.15 34 N.Sd 0.49 28
SD EG-dp 0 0.61 26 0.61 26 0.80 20
IA ECaem 0.77 35 0.72 38 0.77 35
All ECadp g 0.58 54 0.58 54 0.70 46

a Standard errors (S.E.) are in units of gRgsoil moisture, clay, silt) and cmol kg (CEC).
b No soil moisture data available for lllinois fields.

¢ The letter “q” denotes a quadratic regression, all others are linear.

d N.S. denotes no significar®  0.05) regression.

average and surface-layer soil moisture, clay, silt, CEC, organic C, and paste EC. Estimates
for sand were not developed, since sand content is merely a linear combination of clay
and silt. Regressions were performed individually for data from each state and also for all
data combinedTable 6shows the regression statistics for surface-layer data, Wabke 7
includes statistics for profile-average data, both for single-variable and multiple-variable
analyses. Only results for the best-fit F¢ariable are shown for each soil property. The
most accurate estimates were generally obtained for clay, silt, and CEC. Estimates of soil
moisture were variable, while estimates of organic C and paste EC obtained by regression
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Table 7
Regression statistics for the estimation of profile-average soil properties as a functiog, afsi@ individual
and multiple-variable datasets.

Soil Property State Best single-ECa model Veris shallow + deep Veris + EM38
ECadata r? S.E? r2 S.E. r? S.E.
Soil moisture MO NS N.S. N.S.
IL —b - - - - - -
MI N.S. N.S. 0.49 34
Wi ECa-sh 0.38 27 0.71 19 0.75 18
SD EG.dp o° 0.68 28 0.73 26 0.68 28
1A ECa-em 0.40 36 0.34 38 0.58 31
All ECa-dp 0.15 45 0.15 45 0.24 42
Clay MO EGeem 0.26 49 0.60 39 0.60 38
IL ECa-em 0.48 28 0.43 30 0.51 28
MI ECa-dp 1 0.42 30 0.42 30 0.42 30
Wi ECa-em 0.29 20 0.54 16 0.54 16
SD EGeem 0.22 35 0.25 35 0.22 35
1A ECa-em 0.47 49 0.52 47 0.68 39
All ECa-em Q 0.61 48 0.34 63 0.72 42
Silt MO ECa-em 0.29 46 0.38 44 0.44 42
IL N.S. 0.22 54 0.36 50
MI N.S. N.S. 0.40 107
Wi ECa-sh 0.55 66 0.81 45 0.81 45
SD EG.dp 1 0.26 91 0.35 85 0.35 85
1A ECa-em 0.37 73 0.33 77 0.50 66
All ECa-em Q 0.18 143 0.12 148 0.28 136
CEC MO EGeem 0.40 34 0.47 33 0.70 25
IL ECa-em 0.57 35 0.59 35 0.79 26
MI ECaem 0 0.21 39 N.S. 0.65 2z
wi ECa-em 0.14 20 0.66 13 0.66 13
SD EGeem 0 0.44 36 0.44 36 0.51 34
1A ECa-em 0.55 45 0.54 46 0.66 40
All ECa-em 0.66 38 0.49 47 0.70 36

a Standard errors (S.E.) are in units of gRgsoil moisture, clay, silt) and cmol kg (CEC).
b No soil moisture data available for lllinois fields.

¢ The letter “q” denotes a quadratic regression, all others are linear.

d N.S. denotes no significar® & 0.05) regression.

on a single Egvariable were of relatively low accuracy. Only in two cases were coefficients
of determination greater than 0.42 obtained for organic C or paste EC—Missouri profile-
average organic C was estimated with=0.48 and lowa surface-layer organic C was
estimated withr? = 0.78. Because of this, data for organic C and paste EC were notincluded
in Tables 6 and .7

Surface-layer clay, silt, and CEC were usually estimated with higher or similar accuracy
levels than profile-average values. Best estimates of surface-layer soil properties were ob-
tained with each of the three datasets {Ef ECash and EG_qp) several times, depending
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Fig. 5. Relationships between E@ata and CEC and clay content measured at calibration points for all study
fields: (a) EG.gp vs. top-layer clay, (b) E€em vs. profile-average clay, (c) EGp vs. top-layer CEC, and (d)
ECs-emVs. profile-average CEC.

on the specific property and stafBable §. Profile-average soil properties were usually
estimated with the highest accuracy usingEfdata, although E€qpand (rarely) EG.sh
data were most predictive for some caseshe 7). Quadratic equations were significant for
less than half of the soil parameters; for the others only the linegt&@ was significant.
When considering data across all states, regressions for soil moisture, silt, organic C,
and paste EC were of low accuraay € 0.4). However, regressions for clay and CEC
were of reasonable accuraay & 0.55) across all states, both for surface-laykable §
and profile-averageTable 7 datasetsFig. 5 shows the relationship of the best-fit EC
dataset to each of these clay and CEC datasets. In all four cases, the data from the var-
ious states merged into a single, relatively unified data distribution. The clay&t&
tionship appeared to be somewhat different for the lowa data than for the other states
(Fig. 5a and b). However, this difference was not apparent when considering the CEC-
EC, relationship Fig. 5c and d). The relationships of EGlata to CEC and clay were
surprisingly good, considering that data were collected on the different fields at different
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times of the yearTable 3 and under different soil moisture condition&able 4. These
results indicate that it may be possible to develop general calibrations relatingoEC
CEC and clay content that are applicable across a wide range of soil and climatic condi-
tions.

Because studies have found soil temperature to have an effect pfe ECMcKenzie
etal., 1989; Slavich and Petterson, 1990; Sudduth et al.,)2@8@linvestigated the effect of
soil temperature differences among the different fieldble 3 on the regression estimates
of soil properties. Although an equation is availai¢ades et al., 199%or correcting
solution electrical conductivity to a standard temperature, researdiietéefizie et al.,
1989; Sudduth et al., 20Dhave measured temperature effects on, H@t are consid-
erably smaller than the approximately 2% per degree C indicated by this equation. Due
to our uncertainty about the applicability of the solution equation to field B€asure-
ments, we included soil temperature as a multiplicative effect og iEGhe regression
analysis rather than using it to make an explicit temperature correction. In all cases, little
or no improvement in soil property estimates (increase in0.04) was seen when com-
paring these regressions to those that did not include soil temperaabkeg 6 and )
Therefore, we concluded that the soil temperature differences (approximatead) $8en
among study fields had a relatively minor effect on the relationship gftBGoil prop-
erties. This conclusion is supported by earlier work on one of the Missouri study fields
(Sudduth et al., 2001 where EG data were collected over a wide range of soil tem-
peratures (4—28C). ECy-based estimates of topsoil depth were only slightly improved
when temperature was included explicitly in the regression model, compared to modeling
the temperature effect by dividing the dataset into two temperature classes Glah€
16-28°C).

3.2.3. Regression analysis using multiple;B@riables

Another series of regression analyses included multiplgd&ta sources for estimating
the same soil properties listed above. Stepwise second-order polynomial (including inter-
actions) analyses included (i) both Veris datasets—£@nd EG.gpand (i) all three EG
datasets. Single-state estimates of soil properties were improved by including both Veris
EC, datasets in about 40% of the cases. When including Veris and EM38 data, improved
estimates were obtained about 65% of the time, and these estimates were generally better
than those obtained using only Veris data. For multi-state analyses, soil property estimates
were improved when all three BE@ariables were allowed to enter the regression, but were
generally not improved by including just the two types of Veris data. For both single EC
and multiple EG regressions, better estimates of soil properties were most often obtained
within a single state than across multiple stafieeh{es 6 and )0

Integration of multiple Eg variables can provide an increased understanding of soil
variability. However, collection of multiple datasets involves practical and economic con-
siderations. The Veris 3100 is attractive in this regard because it provides two EC
measurements in a single pass over the field. Alternatively, EM-based sensors that simul-
taneously provide data from two measurement depths have recently become available.
Although collecting data with two distinct sensors (i.e., Veris 3100 and EM38) can increase
information content, the added effort and expense is probably justifiable only in limited
circumstances.
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4. Conclusions

We found both similarities and differences in f@ata obtained with the Geonics EM38
(ECa-em and the Veris 3100 (Efshand EG.qgp). Differences were attributed to differences
between the depth-weighted response functions for the three data types, coupled with dif-
ferences in the degree of soil profile layering between sites. Because the claypan soils of
the Missouri fields exhibited the greatest by-depth variation in clay content and CEC, two
primary drivers of EG, differences between E@ata types were most pronounced on these
fields.

Correlations of Egwith clay content and CEC were generally highest and most persis-
tent across fields and E@ata types. Correlations with other soil properties (soil moisture,
silt, sand, organic C and paste EC) were lower and more variable for the fields used in the
study. Within a single state, profile-average clay and CEC could be estimated reasonably
well as afunction of a single Evariable, usually Egen Surface-layer clay and CEC were
also estimated reasonably well with a single variable, generally eithegd@€CEC,.gp Soll
property estimates were often improved by using a combination of multiple/&@bles.

Regressions estimating clay and CEC as a function gf &oss all study fields were
reasonably accurate’(> 0.55). These field sites from six states included soils of differing
parent material (e.g., glacial till, loess), variable soil weathering (e.g., with and without
carbonates, varying degree of clay formation), dissimilar levels of organic matter accu-
mulation, and variations in management (e.g., tilled versus no-till, number of years in crop
production). Given these dissimilarities, itis quite surprising and significant that such strong
relationships between E@nd clay and CEC were obtained for the combined multi-state
dataset.
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